

Vacuum Boosters

TMS RL1500-2000

Dimensional Drawing

Dimensions in inches unless otherwise noted.

20 1/4

9 5/8

Booster/Pump Characteristic Curve

Actual performance curve will depend on the booster model, the backing pump performance curve, and additional factors.

- A = Bypass valve cracking point Dependent on differential pressure of valve and the volumetric ratio (V1/V2) (booster/pump).
- $B=\ Flow\ (\!@)\ atmospheric\ pressure\ -\ Dependent\ primarily\ on\ backing\ pump\ capacity.$ $C=\ Nominal\ flow\ of\ booster\ -\ Dependent\ primarily\ on\ the\ displacement\ of\ the$
- booster and the capacity of the backing pump selected
 D = Ultimate pressure Dependent primarily on the ultimate pressure of the vacuum pump selected and the volumetric ratio.

Consult the factory for actual curve and application of vacuum boosters.

Technical Data	UOM	TMS RL1500	TMS RL2000
Nominal Displacement	CFM	1060	1530
Maximum Leak Rate	Torr-CFM	2.8 x 10 -2	2.8 x 10 -2
Maximum Differential Pressure	Torr	32	32
Motor Size	HP	7.5	10
Rotational Speed	RPM	3600	3600
Approximate Module Weight	Lbs	634	1200
Oil Capacity	Qt	3.2	5

All performance data is based on ambient conditions of 14.7 PSIA and 70 °F, and has a tolerance of +/- 10%.

Learn more by scanning here or contacting us at info@tmsvacuum.com Trust the TMS Difference. | tmsvacuum.com